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Abstract

Models for the distribution of the wall-pressure under a turbulent boundary layer often

estimate the coherence of the cross-spectral density in terms of a product of two coherence

functions. One such function describes the coherence as a function of separation distance in

the mean-flow direction, the other function describes the coherence in the cross-stream di-

rection. Analysis of data from a large-eddy simulation of a turbulent boundary layer reveals

that this approximation dramatically underpredicts the coherence for separation directions

that are neither aligned with nor perpendicular to the mean-flow direction. These models fail
even when the coherence functions in the directions parallel and perpendicular to the mean

flow are known exactly. A new approach for combining the parallel and perpendicular co-

herence functions is presented. The new approach results in vastly improved approximations
for the coherence.

1 Introduction

Reduced levels of aircraft interior cabin noise are desirable for both comfort and health-related

reasons. Blake [1] notes that a turbulent boundary layer on the fuselage at locations forward of

the engines dominates the excitation of the fuselage structure. Boeing 737 flight experiments by

Wilby and Gloyna [2] confirm the importance of turbulent boundary-layer pressure fluctuations

on the noise level inside the aircraft cabin. Innovative use of fuselage materials and arrangement

of the frames and stringers provides some opportunity for a reduction in the amount of vibra-

tion transmitted to the interior cabin. However, in order to design such a structure, detailed

information with regard to wall-pressure fluctuations in the external turbulent boundary layer

is required.

Although the importance of the desired information is clear, a thorough mapping of the wall-

pressure fluctuations under a turbulent boundary layer is difficult to obtain experimentally. The

size of the pressure transducer influences the temporal response [3, 4, 5], and the noise level and

frequency range in the experimental facility must be taken into account [5, 6]. Direct numerical

simulation and large-eddy simulation (LES) were first used to obtain wall-pressure fluctuation

statistics for low-Reynolds-number channel flows [7, 8].

Efforts to model the turbulent wall-pressure fluctuations have been hampered by the lack of

an extensive and reliable database. The validity of many reasonable assumptions made in various

models could not be adequately tested with available data. This situation has begun to change

with a recent LES by Singer [9] of a turbulent boundary layer with a Reynolds number based on

a displacement thickness of 3500. The extensive dataset allows for a more careful evaluation of

reasonable modeling assumptions. In particular, this paper will address a common assumption

known as the "multiplication hypothesis" in which the coherence of the cross-spectral density

for an arbitrary separation direction is formed by the product of the cross-spectral densities for

streamwise and spanwise separations, respectively. A comparison of the data from the LES with

that predicted from the multiplication hypothesis will show that this assumption is inadequate.

A new approach that requires no additional data will be introduced and will be shown to be

more accurate than the previous model.



2 The Generic Problem

Figure 1 shows a plan view of the wall under a turbulent boundary layer. The mean flow

travels in the x direction; the spanwise direction is denoted by y. The wall pressure at an

arbitrary spatial location and at an arbitrary time t is p(x,y,t). A second arbitrary wall-

pressure is p(x + _, y + 7,t + r), where _ and _7 are the separation distances in the x and y

directions, respectively, and r is a time separation between the two measurements. If the flow is

homogeneous in x, y, and t, the two-point correlation depends only on the separations in space

and time and can be written as a convolution integral:

1 f0  f?f/R(_, rh r) - L_ L_ r p(z, y, t)p(x + _, y + 7, t + r) dx dy dt (1)

where L_, L_, and T are the domain lengths in x, y, and t. If the data are assumed to be

homogeneous in all three variables, then the correlation is independent of the values of x, y, and

t. In a generic flat-plate turbulent boundary layer, the homogeneity assumption is exact in y

and t but only approximate in x. The growth of the boundary layer in the x direction accounts

for a mild inhomogeneity; the fact that the boundary-layer growth occurs over distances that

are long relative to typical correlation distances results in approximate homogeneity. In the LES

of Singer [9], the numerical approach enforces streamwise homogeneity of the flow.

The pressure data can be investigated in the frequency domain by taking the Fourier trans-

form of the two-point correlation,

r(_, _,w) = _={R(_, 77,r)} (2)

where 5r implies a Fourier transform. We use the standard nomenclature of the community of

wall-pressure investigators and call the function F((, 77,w) the cross-spectral density. In general,

the cross-spectral density is a complex-valued function. However, the autospectrum

= r(0, (3)

is strictly real. Experimental determination of the autospectrum is a much simpler process than

the determination of the full cross-spectral density function because the former only requires

measurements at a single position and the latter requires a two-dimensional array of measure-

ments. In order of decreasing availability, experiments have been performed that measure:

1. ¢(w)

2. 0,

3. r(e, and F(0,r/,w)

4. F(_,t/,w) (usually for only a few values of _/_)

The recent availability of numerical simulation data can be expected to fill some of the gaps in

our knowledge of the wall pressure distribution.



3 Previous Model

The model of Corcos [3, 10, 11] has been used in various forms for more than 3 decades. The

model expresses the cross-spectral density function as a product of simpler functions; that is,

F(_, r/,w) = ¢(w)A(_,w)B(rhw)exp(-_a) (4)

where A(_,w) and B(r/,w) are real-valued functions that represent the coherences in the longi-

tudinal and lateral directions, respectively, and all of the phase information is contained in a.

Corcos made two important contributions with Eq. (4). The first is the general form of the

cross-spectral density function as a product of simpler functions that can be individually deter-

mined (the multiplication hypothesis). The second contribution provides similarity forms for the

functions A(_,w) and B(rl, w). In this work, we address only the first aspect of the generalized

Corcos model. In other words, does the multiplication hypothesis as defined in Eq. (4) provide

the proper framework for modeling the full cross-spectral density function?

4 Comparison of LES Data with Model Predictions

For comparison of the model predictions with the LES data, we normalize the magnitude of the

cross-spectral density function with the autocorrelation to obtain a coherence function

7(_, ,,w) = Ir(_, ,,w)l/¢(w) = A(_,w)B(_,w) (5)

This work is concerned with the validity of the form of Eq. (5) and not the particular functions

used to represent ¢(w), A(_,w), and B(r/,_z); hence, the numerical values of ¢(w), A(_,w), and

B(_,w) will be taken directly from the LES data; that is,

= Ir( , 0,

=

(6)

(7)

and ¢(w) is determined from Eq. (3). By evaluating the functions ¢(w), A(_,w), and B(rl, w )

directly from the LES data, the comparison of the off-axis (both _ and 77nonzero) coherence will

be the best that the multiplication hypothesis of Eq. (5) can produce.

Figure 2 shows contours of the left- and right-hand sides of Eq. (5) for a specific frequency

wh*/u_. = 10.11, where 5" is the displacement thickness and u_ is the friction velocity. The

solid lines represent the values of the coherence that are determined directly from the LES; the

dashed lines represent the product A(_,w)B(rhW), which has been traditionally used to model

the coherence. The product formulation produces nearly straight contour lines; the contour lines

of the actual coherence are curved like ellipses. Even though the values of the coherence are

chosen to exactly match for _ = 0 and rI = 0, the product formulation exhibits large errors for

off-axis combinations of _ and rl. Similar problems occur at other frequencies.

5 A New Model

The elliptical shape of the contours of _/(_,rl, w ) from the LES suggests that the coherence

might be more appropriately modeled in a modified polar coordinate system. To develop such
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a coordinatesystem,wefirst seeka scalingrelationfor the independent variables (_ = s_) such

that the A and B curves are similar. In the general case treated here, each frequency is separately

considered; hence, the scaling factor s(w) is a function of frequency. The determination of the

scaling factor for a particular frequency involves the minimization of the error

= - (8)
J0

Alternatively, the integration could be taken over y by replacing ( with st/in Eq. (8). The cutoff

value for the integration limit must be chosen to ensure that data are available for the evaluation

of both A(_cutoi%w) and B(_cutoff/s,w). An example of an optimized fit from the LES data is

illustrated in Fig. 3. The value of _cutoff was chosen to be the maximum value of _ for which

data for A were available; in the figure, _cutog/_* _ 22. In a case for which data are available

for very large values of _, a useful value for the cutoff would be the greatest value of _ for which

the coherence A(_, w) first becomes insignificant.

If the functions A and B are taken to be one-dimensionai functions of similarity variables (for

example, if A = A(_w/Uc) and B = B(_lw/Uc), where Uc is the convection velocity), then the

scaling factor needs to be determined for only a single frequency; the factor for other frequencies

can be determined analytically. In addition, if exponential forms are used to represent both A

and B, then the scaling factor can be derived by straightforward analysis.

After the scaling function s(w) has been obtained, radial and azimuthal coordinates are

developed. The radial coordinate is

r = y/_2 + (s_) _ (9)

and the azimuthal coordinate is

6 = arctan(s_//_) (10)

As _ goes to 0, the radial coordinate r goes to _ and the angular coordinate 8 goes to 0. Hence,

small perturbations away from a strictly streamwise separation produce a smooth departure of

r from _. Similarly, as _ tends to 0, the radial coordinate r tends to st/and 6 goes to r/2. If

the correspondence between A(_,w) and B(_/s,w) were perfect (for example, if both functions

were exponentials), then a suitable approximation for the off-axis coherence would be a function

of the radial coordinate r only. In such a circumstance, both A(r,w) and B(r/s,w) would be

identical; either could be used to model "y(_, r/,w). In the more general case, only an approximate

relationship exists between A(_,w) and B(_/s,w). In this more general case, A(r,w) is expected
to be a more accurate approximation when 7/is small, and B(r/s,_) is expected to be more

accurate when _ is small. Hence, a reasonable estimate for the coherence shifts the major

contribution from A(r,w) to B(r/s,w) as s_ increases relative to _. The proposed new model

introduces a linear fit to represent the shifting contribution; that is,

7(¢,_,w) = A(r,_) + (B(r/s,w) - A(r,w))2O/Tr (11)

Contours of the coherence predicted by the new model for w_'/u¢ = 10.11 are indicated by

the dashed lines in Fig. 4. The agreement of the new model with the LES data is improved

dramatically compared with the model used in Fig. 2. Similarly, an improved agreement exists

for other frequencies, as illustrated in Figs. 5(a)-(h).



6 Simplified Implementations

The new model for the off-axis coherence is a simple and straightforward improvement over the

formulation of Eq. (5), which employs a product of the longitudinal and lateral coherences. The

new model can easily be incorporated into existing computer codes with minimal programming

effort. No new data are required, although new measurements of the longitudinal and lateral
coherences can easily be exploited to obtain more accurate predictions. The subsections below

detail simplified implementations of the new model into current algorithms that use various

assumptions with regard to the form of the coherences A and B.

6.1 Coherences depend upon similarity variables

In this case A = A(a) and B = B(¢7), where a and ft are similarity variables. In the usual case

a = _w/Uc and/3 = rlw/Uc, where a is related to the phase of the cross-spectral density function

and Uc is the convection velocity. Because the coherences depend only on single variables, the

optimal scaling parameter s is a constant and is defined by the minimization of

E(8) = [A(a) - B(a/8)] 2da (12)
J0

where acutoff must be great enough to ensure that A(acutoff) and B((:tcutoff/s ) are defined. A

reasonable choice of acutoff results in values of A(acutoff) and B(otcutoff/s) that are near the lower

limit of significance. Greater values of acutoff cause the integral in Eq. (12) to accumulate large

contributions from regions in which the coherence is small. The determination of A((i) and B(fl)

can be performed with either algebraic expressions, function calls, or table lookups. After s has

been obtained, Eqs.(9), (10), and (11) can be used instead of the product formulation (Eq. (5)).

6.2 A and B represented by the same functional form

In this case, the scaring parameter can be found analytically. Typically, in this case, A and B

are single variable functions; however, this requirement is not necessary. The scaling parameter
s is chosen to make

A(_) =_B((/s) (13)

As an example, in the model of Efimtsov [12]:

A((, A() = exp (-(/A() (14)

and

a,) = exp (-u/A,) (15)

where A_ and A n are correlation lengths that depend upon the frequency and various flow

parameters. In order to satisfy Eq. (13), s must be chosen so that

exp = exp (-(Us)IA,) (16)

which requires
= A_/A, (17)

For the Efimtsov model, although s will always equal the ratio A¢/A,, the specific numerical

values of s will vary with the frequency and flow conditions because the values of A_ and A,

vary with the frequency and flow conditions. As in the previous subsections, after s has been

obtained, Eqs.(9), (10), and (11) can be used instead of the product formulation (Eq. (5)).



7 Conclusions

A large-eddy simulation database was used to evaluate the validity of the multiplication hypoth-
esis for modeling the coherence of the cross-spectral density of the wall-pressure fluctuations.

Comparison with the data from the numerical simulation revealed that even under optimal con-

ditions the use of the multiplication hypothesis predicts off-axis coherences that are badly in

error. A new modeling form was introduced and shown to perform much more accurately. The

new model requires no additional data than that previously used, and the implementation of the
new model into existing computer codes can be readily achieved. For instances in which various

simplifying assumptions in regard to the form of the longitudinal and lateral coherences have

been exploited in an existing computer program, shortcuts for the inclusion of the new modeling
form were discussed.
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Figure 1. Plan view of boundary layer.
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Figure 2. Coherence contours of cross-spectral density for w_*/u_. = 10.11. Contours are spaced

with increments of 0.1. _LES data (left-hand side of Eq. (5)); Results from

multiplication hypothesis (right-hand side of Eq. (5)).
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Figure 3. Comparison of A(_,w) and B(_/_,w) for _*/u_ = 10.11. Optimized value of s is

7.86. __A(_,w); ...... B((/s,w).
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Figure 4. Coherence contours of cross-spectral density for w_*/u_ = 10.11. Contours are spaced

with increments of 0.1. _J_ES data (left-hand side of Eq. (11)); New model
(right-hand side of Eq. (11)).
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Figure 5. Coherence contours with increments of 0.1; ___.___LES data. Old or new

model, a) w$*/u_ = 6.74; Old model, b) w$*/u._ = 6.74; New model, c) w_*/u_. = 13.48;

Old model, d) _z_'/u_- = 13.48; New model, e) w_*/u_ = 20.21; Old model, f) w$'/u_. =

20.21; New model, g) w_'/u_ = 26.95; Old model, h) w_'/u_ = 26.95; New model.
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